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The two-phonon X-ray scattering from hexamethylenetetramine is calculated, and this is compared 
with the one-phonon result, here independently recalculated. The details of the calculation procedure 
are fully described, and possible savings in computation discussed. In a few regions of reciprocal space 
within the Cu K~ reflecting sphere the two-phonon scattering is larger than the one-phonon scattering. 
It is therefore essential when making quantitative comparisons with experiment that the two-phonon 
scattering be considered. 

Introduction 

Cochran & Pawley (1964) have calculated the one- 
phonon X-ray scattering cross-section of hexamine 
(hexamethylenetetramine). Since that time there have 
been improved measurements of the thermal diffuse 
scattering (TDS) by Powell (1963) and McMullan 
(1967). Until the calculation here reported the only 
comparisons of experiment with theory involved either 
the one-phonon calculation mentioned above or the 
Difference Fourier Transform of Amords, Canut & 
De Acha (1960). The latter is simply the difference in 
the squared Fourier transform calculated with and 
without thermal motion, where the atomic thermal 
motion is introduced through anisotropic mean-square 
amplitudes as found by crystallographic structure re- 
finement. The present calculation shows that the effect 
of the two-phonon process should not be neglected 
when comparisons with accurate measurements are 
attempted. 

The crystal structure of hexamine is fully described 
by Becka & Cruickshank (1963). Nearly spherical 
molecules of symmetry 43m, are placed on a body 
centred cubic lattice with only one molecule in the 
primitive unit cell. The planes (Okl), (lkl) etc. in recip- 
rocal space contain reciprocal lattice points, and it is 
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customary to make measurements of the diffuse X-ray 
scattering in the interlayers (½kl), (~kl) etc. where there 
is no Bragg scattering. The present calculations are for 
the (½kl) interlayer. The one-phonon scattering calcu- 
lation is here repeated in order to establish a scale. 

The model used here is exactly the same as that of 
Cochran & Pawley (1964), the equations for the cal- 
culations coming from Cochran (1963). However, be- 
fore discussing this in detail mention should be made 
of a method of calculating in one procedure the effect 
of all the phonon processes. This has been done for 
NaC1 by Eldridge & Lomer (1967) and Lomer (1966). 
A model for a small crystal is set up in the computer, 
and the displacements for all the atoms are calculated 
for a typical but random set of vibrations. The phonon 
eigenvectors and eigenvalues are obtained by the use 
of the model, and therefore the energies in all the pos- 
sible modes of vibration are known for a given tem- 
perature. The displacement configuration is obtained 
by assigning random phases to all the modes. The total 
scattering from this small crystal is then found. This 
must of necessity include all the phonon processes. 
The calculation is then repeated a number of times, 
each time taking new random phases, until the aver- 
aged calculated intensity becomes stable. The conclu- 
sion for NaC1 was that most of the TDS is due to one 
and two phonon processes - calculated separately - 
but that in some regions the scattering from higher 
order processes was appreciable. This emphasizes the 
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need for a two-phonon scattering calculation for hex- 
amine. 

S c a t t e r i n g  e q u a t i o n s  

In this section the relevant equations governing the 
TDS are taken from the review article of Cochran 
(1963), and moulded to the example of hexamine. The 
numbering of the equations identifies their source. 

The one-phonon and two-phonon scattering cross- 
sections are (do"/d£2)(o and (da/dt'2)(2) respectively. The 
scattering geometries are shown in Fig. 1, defining the 
phonon wave-vectors q and q'. For a crystal with N 
primitive unit cells with n atoms in the unit cell, 
Cochran (1963) shows that 

--d-if/ m j = , - ~  -IG}D(Q)12 (1) (C:7.20) 

where 

QG~)(Q)=Q . ~ O~(kq)f(kQ) exp [iB. r(k)] 
k=l  

(2) (C:7.19) 
and 

) _ 3, Ej(q')E~(q- q') do" (2) 1 Ix Ix IG~>(Q)I2 
- - 2 m  - f  i,j=l q" o9~(q')co2(q-q ') 

(3) (C:7.25)* 
where we have introduced 

o) ~- f (kQ)  exp r(k)] G,j (Q)= [iB. 
k=l 

(Q.  fJ~(kq')) (Q " ' . • U , ( k , q -  q )) (4) 

i and j are indices which range over the phonon 
branches at any point q in the Brillouin zone, and 
o)~(q) is the angular frequency in the j t h  branch. The 
total energy in this branch is 

E~(q):  [n~(q) + ½]Iico~(q) (5) (C:2.19) 

nj(q)=[ exp (ho)j(q)/kBT)- 1] -1 . (6) (C:2.20) 

Q is the X-ray scattering vector, of magnitude 
4re sin 0/2, and B is a vector of the reciprocal lattice 
(Fig. 1). The vector r(k) defines the equilibrium posi- 

* Correction here in the normalizing constant (Cochran, 
private communication). 
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• • 

q-q' 

Fig. 1. The geometries for one- and two-phonon scattering. 
Black squares represent reciprocal lattice points. 

tion of the kth atom within its cell, for which f (kQ)  
is the atomic scattering factor modified by the Debye- 
Waller factor. 

In the equations above we have used normalized 
wave amplitudes, l~Ij(kq), defined by 

Z m~lfJj(kq)12= IZm~=m. (7) (C:2.11) 
k k 

Dividing by m we get 

11 mi¢ [13j(kq)12 = 1= 12 ~ ( k q ) ,  (8) 
k m k 

giving a relationship with the orthogonalized eigen- 
vectors, {j(kq), obtained from the secular equation. 
It is computationally advantageous to calculate abso- 
lute wave amplitudes, Uj(kq), before embarking on any 
scattering calculation. From equations (C:2.18) and 
(C: 2.19) - not quoted above - we have 

Ej(q) = No)~(q) ~ melUj(kq)l z (9) 
k 

which with equation (8) gives 

~//  . . . . . .  E~(q) 
Ul(kq) = Nmkog~(q) ~j(kq). (10) 

Equations (1) and (3) then become 

(1) = N z IX 
j = l  

( ) 3. 
do" (2) =½ Nz Z IX 

-d~- t,j q" 
=1 

[ ~2 (Q .  U~(kq))f(kQ) 
k = l  

x exp [iB. r(k)] I 

~2 ( Q .  Uj(kq')) 
k = l  

x (Q .  U~(k,q-q'))f(kQ) exp [iB. r(k)] 

2 
, (11)  

• (12)  

Now let us turn to the problem of hexamine. If  we 
assume that the molecules move only as rigid bodies, 
this is equivalent to assuming that the internal modes 
of vibration of the molecules have negligible ampli- 
tudes of motion. Three translational and three libra- 
tional coordinates, expressed as vectors u and 0, are 
then sufficient to describe the displacement of a mol- 
ecule. The displacement for the atom at r(p) in the 
molecule with centre at r(k) in the unit cell defined by 
r(/), due to the phonon with wave-vector q, j t h  branch, 
is 

u(lkp) = u(/k) + O(lk) x r (p) ,  

( u(lk)~ = exp [i(q. {r(l)+r(k)} 
o(z~:)] ~oj(tzq)! 

- coj(q)t)]. (13) 

It should be noted that this travelling wave involves 
q .  {r(/)+r(k)} but not q .  r(p). This, as we shall see, 
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causes slight differences between the present equations 
and those of Cochran. 

As there is only one molecule in the primitive unit 
cell we can set k = 1. For any wave-vector q, branch j 
the eigenvector from the secular equation has six com- 
ponents ~i, 

6 
~ ¢ 2 - - 1 ,  

i=l  

~1,2, 3 = V ' M  O.~' j (q)) l ,  2, 3 

~4,5 ,6= ]//~ ( O j ( q ) ) ' ,  2, 3 (14) 

where M is the molecular mass and I the moment of 
inertia. Similar to equation (10) we have 

V Ej(~ 
Uj(q) = NMo)~(q) ~1,2,3 

O~(q) = NIco~(q) ~4, 5,6 
(15) 

from which we can find U~-(pq), the amplitude for the 
pth atom found after performing the vector product 
of equation (13). 

We have to be very careful on introducing r(p) into 
equations (11) and (12). Cochran's expression (C: 7.16) 
is now 

i lf, f ( p Q )  exp [ iQ.  {r ( l )+r(p)} lQ.  u(lp) , (16) 
lp 

but the travelling wave to be substituted for u(lp) lacks 
the factor exp [iq. r(p)]. This causes the B .  r(k) in 
equations (C:7.19) and (C:7.25) to be replaced by 
Q .  r(p). The equations for the calculations for hex- 
amine therefore become 

6 
(1) =N 2 l ~ l ~  (Q.  U i(pq)) f (pQ) 

j= l  p 

× exp [ iQ .  r(p)][ 2 , 

( )  d~ ~2~ = ½ m  X Z lZ (Q. U~(pq')) 
i , j=  1 q" p 

(17) 

(Q .  U ~ ( p , q - q ' ) ) f ( p Q )  exp [ iQ.  r(p)]l 2 . (18) 

In this final expression the fact that the vectors U are 
complex in character has been emphasized by under- 
lining. 

Calculation procedure 

The one-phonon cross-section, equation (17), is a 
straightforward calculation for the point Q in recip- 
rocal space, whereas the two-phonon cross-section, 
equation (18), requires a summation over the whole 
of the Brillouin zone. The first Brillouin zone is a 
rhombic dodecahedron, Fig.2, and similar dodeca- 
hedra placed about each reciprocal lattice point must 
fill reciprocal space. However this is an awkward shape 
to compute with when a simpler shape is allowed. 

Fig. 2 shows how the first Brillouin zone can be fitted 
into two cubes. In fact any volume with sides 1, 1 and 
2 reciprocal lattice units placed along axes (100> will 
be equivalent to the first Brillouin zone. For our pur- 
poses we choose a zone with the long side along [010] 

( 
Fig. 2. The first Brillouin zone. The rhombic dodecahedron can 

be considered as a cube with pyramids on all faces. These 
pyramids can be mapped into the outlined cube. 

1 ' - I  
1"'1" I 

1"-1"-1" I 
i '" 1"" 1"- 1" I 

i'- I'- I'" i'" l 
I'" I'" I'- I'" I" I 

0 

Reciprocal 
" lattice point 

- Equivalent points 

Fig. 3. The zones used for the calculations, and the associated 
reciprocal lattice points. 

Z 

in 

Fig.4. Two-phonon scattering geometry, showing the equiva- 
lence of choosing wave vectors related by any reciprocal 
lattice vector. 
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and with its origin at a corner. Similar zones with 
origins at the reciprocal lattice points completely fill 
reciprocal space. Those zones required in the present 
calculation are shown in Fig. 3. 

We must reassure ourselves that we can choose such 
a convenient Brillouin zone. Fig.4 shows the geometry 
for two-phonon scattering where phonon wave-vectors 
in different zones are compared. These different wave- 
vectors yield identical eigenvectors and eigenvalues, 
though there may be unimportant differences within 

the eigenvector phases. There is no part of equation 
(18) which involves q and q' except through the eigen- 
vectors and eigenvalues, so the result must be inde- 
pendent of the zone chosen. 

When summing over the Brillouin zone use of very 
long wavelength phonons should be avoided. The 
acoustic branches in this region have low frequencies 
and as a result would dominate the calculation. This 
would be an error because any particular acoustic mode 
phonon is representative of only a small region of re- 

] ~ ' - - .  . f 

'x  ; 

0 -'-Y 

L. 

• Reciprocal lattice point 

• Equivalent points 

Fig. 5. The (½kl) calculation grid and the points (black dots) whose eigenvectors and eigenvalues need to be calculated. 

2'2 4'8 10 22 48 100 220 480 1000 

2 4 6 8 

Fig.6. The one-phonon X-ray TDS, recalculated. (½kl) interlayer. The value of the index k is indicated. 
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ciprocal space, but should be representative of a region 
determined by the sampling interval. Errors of this 
nature were avoided as follows. 

In Fig. 5 we see the grid of the (½kl) interlayer over 
which the calculation is to be done. The grid points 
are spaced at k-reciprocal lattice units. Eigenvectors 
and eigenvalues are calculated at points with coordi- 

nates hl/4, h2/4 and h3/4 in reciprocal lattice units, 
where hx, hz and h3 are all odd integers. This gives 16 
points in all, N =  16, and no point is too near to q=0 .  
The procedure for a sampling interval reduced by a 
factor of two, giving N =  128, is exactly similar. 

Two calculations, one for N =  16 and the other for 
N =  128, were done and compared. For this calculation 

Fig. 7. The two-phonon X-ray TDS, on the same scale as Fig. 6. 

2 4 6 8 

Fig. 8. The sum of Figs. 6 and 7, the total inelastic X-ray scattering neglecting three-phonon and higher order processes. 
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the hydrogen atoms were all omitted, giving over 50% 
saving in computer time for the loss of at most 16% 
of the scattering. Going from N =  16 to N =  128 in- 
creases the computing time by a factor of 32, but the 
difference in the results was so small that the increase 
in accuracy was not thought worthwhile. As the larger 
sampling interval was found to be sufficient (though 
not quite so for the one-phonon case), the two-phonon 
calculation was repeated with the inclusion of the hy- 
drogen atoms. Their inclusion was seen to be necessary 
on comparing the one-phonon calculations done with 
and without the hydrogen atoms. 

in Fig.9 where both results are plotted separately for 
the line (½k0) in reciprocal space, which is parallel to 
a tetrad axis. The two-phonon cross-section is much 
the smoother function, which is a well-known result. 

It should be emphasized that this comparison is only 
valid at room temperature (300°K), the temperature 
used in the calculation. The two-phonon intensity 
varies roughly as T 2 whereas the one-phonon intensity 
varies as T, so that any experimental measurements 
made at liquid nitrogen temperature would involve a 
contribution of no more than 10% intensity from the 
two-phonon process. 

Results 

The results of the calculations are shown in Figs. 6-9. 
Fig.6 is simply a repeat of the calculation of Cochran 
& Pawley (1964) done with a completely independent 
program. The fact that these two results agree is reas- 
suring, and this result establishes the scale shown for 
Figs. 6-8. The atomic scattering factors used for f (kQ)  
were taken without scaling from International Tables 
for X-ray Crystallography (1959). All calculations were 
terminated at the reflecting sphere for Cu Kc~ radiation, 
the most commonly used X-ray source. No account is 
takea of the X-ray polarization factor, for which X-ray 
measurements should be corrected before making com- 
parisons. 

Fig.7 gives the two-phonon scattering intensity in 
the (½kl) interlayer, which when added to Fig. 6 gives 
Fig. 8. At large scattering angles (large Q) the two- 
phonon intensity is the same order of magnitude as 
the one-phonon intensity, and in a few places is the 
main source of scattering. This is shown more clearly 

Intensity 

.9 

; ; 6 8 , 

Fig.9. The one-phonon (upper part) and two-phonon (lower 
part) TDS along the line l= 0 in the (X2kl) interlayer, showing 
that the two-phonon scattering exceeds the one-phonon 
scattering in some regions of high scattering angle. 

Conclusion 

The two-phonon cross-section for the molecular crys- 
tal hexamine at room temperature is comparable with 
the one-phonon cross-section at large scattering angles. 
Cochran & Pawley (1964) point out in their conclusion 
that experimental measurements would need to be cor- 
rected for second order scattering when doing a nu- 
merical comparison, and it would now seem advisable 
to make measurements at lower temperatures to reduce 
this scattering. However, the measurement exposure or 
counting times would then be increased, increasing the 
Compton scattering contribution. 

Economies in computing time are best made by 
choosing a rather coarse interval for calculation be- 
cause the two-phonon cross-section is a smooth func- 
tion. No advantage is gained by ignoring the contribu- 
tion of the hydrogen atoms, although their scattering 
power is small, when doing a one-phonon calculation. 
However, Fig.9 shows that the hydrogen atoms could 
be ignored for the two-phonon case without much loss 
as most of the intensity occurs at high scattering angles. 

The author wishes to thank the Edinburgh Regional 
Computing Centre for making the KDF9 computer 
available, and to thank Professor W.Cochran for 
valuable discussions. 
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